
USING BINARY FACTORIZATIONS TO CONNECT ADDITIVE
SYSTEMS AND FAIR SACKS OF DICE

Abstract. Suppose we have polynomials or power series, none equal to 1,
with a product that has coefficients of only 1 and such that each has coefficients
of only 0 and 1. We define this to be a binary factorization, which we use
to connect additive systems and fair sacks of dice, two seemingly unrelated
mathematical topics. After establishing the relationship between these three
topics, we get new results by translating known results about additive systems
and fair sacks of dice.

1. Introduction.

There are many mathematical results that have been discovered and later inde-
pendently rediscovered. One recent example has gone unnoticed until now because
the results involve additive systems and fair sacks of dice, two topics that appear
to be far apart. To bridge the gap, we introduce a third topic.

Definition. A finite binary factorization is a set of polynomials whose product is
1 + X + X2 + · · ·+ Xs−1, where s is a positive integer, such that each polynomial
has coefficients that are only 0 and 1, and no polynomial equals 1. We also say that
the set is a binary factorization of size s.

Problem 1. Find a unique form for every finite binary factorization.

After we define additive systems and fair sacks of dice, which we delay for now,
we will see that recent structure theorems for additive systems [2] and fair sacks
of dice [3] give the same solution to this problem. What we find particularly inter-
esting is that each structure theorem actually solves a generalization of Problem 1,
but not the same generalization. We look at the structure theorems for binary
factorizations, additive systems, and fair sacks of dice in Sections 2, 3, and 4, re-
spectively. Finally in Section 5 we see how additional results on additive systems
translate to binary factorizations and to fair sacks of dice. To first get a feel for the
subject, we invite readers to complete the following.

Exercises.
(1) Show that the only binary factorizations of size 6 are

{
1 + X, 1 + X2 + X4

}
,{

1 + X + X2, 1 + X3
}
, and

{
1 + X + X2 + X3 + X4 + X5

}
.

(2) Given a finite binary factorization, consider the product of only some of
the polynomials. Prove that the number of terms in the product equals the
product of the number of terms in each polynomial. In particular, conclude
that there is only one binary factorization of size s if s is prime.

(3) Use the previous exercise to identify the 11 binary factorizations of size 12.
To show that no others exist, you may wish to use the structure theorem
for binary factorizations in Section 2. (More generally, after Section 3 we
can count the number of binary factorizations of size s by rephrasing in
terms of additive systems and then consulting [4].)
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2. Binary Factorizations.

In order to discuss one of the generalizations Problem 1, we need to redefine a
binary factorization so that its size can be∞. For us, a power series is a formal sum∑∞

n=0 cnX
n with each cn real. We almost never substitute a real number for X in

such an infinite sum, so we ignore convergence. Let Ψ∞ (X) = 1+X+X2+X3+· · · ,
and for a positive integer s, let Ψs (X) = 1 + X + X2 + · · ·+ Xs−1.

Definition. A set
{
fi (X)

}
i∈I is a binary factorization if

(1)
∏

i∈I fi (X) = Ψs (X), where s is a positive integer or ∞, and
(2) for all i ∈ I, fi (X) is a power series (or polynomial) with every coefficient

0 or 1, and with fi (X) 6= 1.
We also say that the set is a binary factorization of size s.

We should mention that the notation Ψs (X) matches [3], and we have chosen
the term size to align with [2]. Let us begin with a few simple observations about
a binary factorization

{
fi (X)

}
i∈I . First, since the constant term of Ψs (X) is 1,

the same must be true for every fi (X). Second, the index set I can be empty.
Throughout this paper we use the convention that a product of no objects equals 1,
so the empty set is the unique binary factorization of size 1. Also, the index set could
instead be infinite. For example, the reader can verify that if I = {1, 2, 4, 8, 16, . . . },
then

∏
i∈I
(
1 + Xi

)
= Ψ∞ (X), so that

{
1 + Xi

}
i∈I is a binary factorization of

size ∞.

Remark 2. For a binary factorization
{
fi (X)

}
i∈I , the product of any subset, say

g (X) =
∏

i∈I0 fi (X), has coefficients 0 and 1 only. To see this, let h (X) =∏
i∈I\I0 fi (X) and notice that both g (X) and h (X) are nonzero power series whose

coefficients are nonnegative integers. Our conclusion now follows from observing
that g (X)h (X) = Ψs (X), which has coefficients 0 and 1 only.

In the following example we use the Ψs (X) to write a binary factorization.
Eventually we will see how to do this uniquely for every binary factorization.

Example 3.
{

1 + X2 + X4, 1 + X + X6 + X7
}

is a binary factorization size 12

that can also be written as
{

Ψ3

(
X2
)
,Ψ2 (X) Ψ2

(
X6
)}

.

The usefulness of the Ψs (X) is based on the property that for b a positive integer
and a a positive integer or ∞,

(2.1) Ψb (X) Ψa

(
Xb
)

= Ψab (X) .

To prove this, first notice that for positive integers c and d, (1−X) Ψc (X) = 1−Xc,
or substituting Xd for X,

(
1−Xd

)
Ψc

(
Xd
)

= 1 − Xcd. Therefore if a and b are
positive integers,

(1−X) Ψb (X) Ψa

(
Xb
)

=
(

1−Xb
)

Ψa

(
Xb
)

= 1−Xab = (1−X) Ψab (X) ,

and dividing by 1−X gives us (2.1). The case of a =∞ is nearly the same, where
we additionally use

(
1−Xd

)
Ψ∞

(
Xd
)

= 1 to get

(1−X) Ψb (X) Ψ∞

(
Xb
)

=
(

1−Xb
)

Ψ∞

(
Xb
)

= 1 = (1−X) Ψ∞ (X) .

To find binary factorizations using (2.1), suppose, for some a0, a1, . . . , aL−1,
that we define bj = a0a1 · · · aj–1 for all 0 ≤ j ≤ L. In particular, b0 = 1 by our
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convention on empty products. We require each aj to be an integer greater than
1, except that we also allow aL−1 = ∞, in which case bL = ∞. Then we can use
Ψbj (X) Ψaj

(
Xbj

)
= Ψbj+1 (X) to get

L−1∏
j=0

Ψaj

(
Xbj

)
= Ψb1 (X)

L−1∏
j=1

Ψaj

(
Xbj

)
= Ψb2 (X)

L−1∏
j=2

Ψaj

(
Xbj

)

= Ψb3 (X)

L−1∏
j=3

Ψaj

(
Xbj

)
= · · · = ΨbL−1

(X) ΨaL−1

(
XbL−1

)
= ΨbL (X) .

Similarly, for an infinite sequence of integers a0, a1, a2, . . . , each greater than 1,
define bj = a0a1 · · · aj−1 for all nonnegative integers j. We claim that

∏∞
j=0 Ψaj

(
Xbj

)
=

Ψ∞ (X). To see this, let L be a positive integer. By the above calculation,∏∞
j=0 Ψaj

(
Xbj

)
= ΨbL (X)

∏∞
j=L Ψaj

(
Xbj

)
. The constant term of each Ψaj

(
Xbj

)
is 1, and if j ≥ L, then all other terms have degree at least bL. Thus the term 1 is
the only term of degree less than bL in the product

∏∞
j=L Ψaj

(
Xbj

)
. This implies

that for every nonnegative integer N < bL, the coefficient of XN is the same in∏∞
j=0 Ψaj

(
Xbj

)
and in ΨbL (X), i.e., every such coefficient is 1. Since bL → ∞ as

L→∞,
∏∞

j=0 Ψaj

(
Xbj

)
= Ψ∞ (X).

We now introduce terminology to capture the ideas above.

Definition. Let L be a nonnegative integer or ∞. Suppose we have a sequence of
L terms

(
aj
)

0≤j<L
such that each aj is an integer greater than 1, except that we

also allow aL−1 =∞ if 0 < L <∞.
Define bj = a0a1 · · · aj–1 for all 0 ≤ j < L, and define bL to be the product of all

the aj . In particular, b0 = 1, and bL =∞ if and only if either L =∞ or 0 < L <∞
and aL−1 =∞. Then the sequence of L terms

(
Ψaj

(
Xbj

))
0≤j<L

is a Ψ-sequence,

and it is generated by
(
aj
)

0≤j<L
. We say the size of this Ψ-sequence is bL.

In this definition, the empty sequence of integers generates the empty Ψ-sequence,
and this is the only Ψ-sequence for L = 0 and the only Ψ-sequence of size 1. If(

Ψaj

(
Xbj

))
0≤j<L

is a Ψ-sequence of size s, then we have already shown that the

product of the terms is Ψs (X), and thus the set
{

Ψaj

(
Xbj

)}
0≤j<L

is a binary

factorization of size s.
In Section 5 we will see how to determine whether an arbitrary binary factor-

ization can be ordered to give a Ψ-sequence. To see now that this is not always
possible, recall Example 3. Since 1 + X + X6 + X7 cannot be written in the form
Ψa′

(
Xb′
)
, neither ordering of

{
Ψ3

(
X2
)
,Ψ2 (X) Ψ2

(
X6
)}

gives a Ψ-sequence.

This binary factorization, however, is closely related to Ψ2 (X), Ψ3

(
X2
)
, Ψ2

(
X6
)
,

which is the Ψ-sequence generated by 2, 3, 2. We have simply replaced the first
and last term of this Ψ-sequence by their product.

This type of replacement works quite generally. If we replace some elements
of a binary factorization by their product, then we have another binary factor-
ization, since the new polynomial has coefficients 0 and 1 only by Remark 2. In
the case that we begin with a binary factorization that is a Ψ-sequence, such re-
placements are not particularly useful if we replace adjacent terms by their prod-
uct. For instance, consider Ψa1

(X), Ψa2
(Xa1), Ψa3

(Xa1a2), which is generated
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by the arbitrary sequence a1, a2, a3. We have Ψa1
(X) Ψa2

(Xa1) = Ψa1a2
(X) and

Ψa2 (Xa1) Ψa3 (Xa1a2) = Ψa2a3 (Xa1) by using (2.1), where in the latter case we
used Xa1 in place of X. Thus if we replace the first two terms or last two terms of
the Ψ-sequence, we get respectively the Ψ-sequences generated by a1a2, a3 or a1,
a2a3.

It is convenient to use partitions to formalize replacements. That is, given a
partition of the terms of some Ψ-sequence, we replace the terms in every parti-
tion element by their product. The examples above correspond to the partitions{{

Ψ3

(
X2
)}

,
{

Ψ2 (X) ,Ψ2

(
X6
)}}

,
{{

Ψa1 (X) ,Ψa2 (Xa1)
}
,
{

Ψa3 (Xa1a2)
}}

, and{{
Ψa1 (X)

}
,
{

Ψa2 (Xa1) ,Ψa3 (Xa1a2)
}}

. In order to avoid replacements that could
have been created by starting with a different Ψ-sequence, we require that no par-
tition element contains two consecutive terms of the Ψ-sequence. We call these
nonconsecutive partitions. When we use such a partition to replace terms of a
Ψ-sequence, we say we have nonconsecutive products, and with this terminology at
last we can state a solution to Problem 1, except generalized from finite binary
factorizations to any binary factorizations.

Theorem (Structure of binary factorizations). A binary factorization can be writ-
ten uniquely as nonconsecutive products of Ψ-sequences.

That is,
(1) nonconsecutive products of a Ψ-sequence give a binary factorization, and
(2) every binary factorization is the set of products that are created from a

unique nonconsecutive partition of a unique Ψ-sequence.
Note that above when we established (1), we also showed that the size of the
binary factorization equals the size of the Ψ-sequence. For (2), the uniqueness is
not difficult, but existence takes a fair amount of work. Rather than providing a
proof, we connect binary factorizations to additive systems.

3. First connection: additive systems.

For a set A of positive integers, consider the power series 1 +
∑

n∈A Xn. Its
coefficients are all 0 and 1, its constant coefficient is 1, and if A is nonempty then it
is not equal to 1. That is, it is exactly the type of power series that might occur in
a binary factorization. We can recover A from any such power series as the set of
integers that appear as exponents of its nonzero, nonconstant terms. For instance,
1+X2 +X4 and 1+X+X6 +X7 correspond to {2, 4} and {1, 6, 7} respectively. We
saw in Example 3 that the set of these two polynomials is a binary factorization of
size 12, and this is equivalent to the fact that the collection of sets

{
{2, 4} , {1, 6, 7}

}
is an additive system of size 12.

Definition. Let s be a positive integer or ∞. A collection of nonempty disjoint
sets of positive integers is an additive system of size s if the following hold.

(1) Every nonnegative integer less than s can be written in one and only one
way as a sum of numbers from the collection, with at most one number
selected from each set.

(2) For every integer greater than or equal to s, there are no ways to write s
as such a sum.
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This definition uses the convention that an empty sum equals 0, just as earlier
we defined empty products to be 1. To count how many ways nonnegative integers
can be written as the type sum in this definition, we can use the following simple
result.

Proposition 4. Let {Ai}i∈I be a collection of sets of positive integers, and define
fi (X) = 1+

∑
n∈Ai

Xn for all i ∈ I. For any nonnegative integer N , the coefficient
of XN in

∏
i∈I fi (X) is equal to the number of ways to write N as a sum of numbers

from {Ai}i∈I , with at most one number selected from each Ai.

Note that when I is an infinite set, the coefficient of XN might be ∞.

Proof. Write fi (X) =
∑∞

n=0 ci,nX
n for each i ∈ I. The coefficient of XN in∏

i∈I fi (X) equals
∑∏

i∈I ci,ni
, where the sum is over all {ni}i∈I such that each

ni is a nonnegative integer and N =
∑

i∈I ni. Since ci,n = 1 if n ∈ {0} ∪ Ai and
otherwise ci,n = 0, this equals the number of ways to choose {ni}i∈I such that
N =

∑
i∈I ni and ni ∈ {0}∪Ai for all i. By discarding all ni such that ni = 0, this

tells us the number of ways to write N as the sum of numbers from {Ai}i∈I , with
at most one number selected from each Ai. �

Proposition 4 immediately tells us how rephrase the definition of an additive
system by using power series.

Theorem 5. Let {Ai}i∈I be a collection of nonempty disjoint sets of positive inte-
gers, and define fi (X) = 1 +

∑
n∈Ai

Xn for all i ∈ I. Then the collection {Ai}i∈I
is an additive system if and only if

{
fi (X)

}
i∈I is a binary factorization.

Here is Theorem 1 of [2].

Theorem (Structure of additive systems). An additive system can be written
uniquely as a mixed quotient of a British number system.

We could give careful definitions of British number systems and mixed quotients.
Instead, however, consider the correspondence we have already established. A set
A of positive integers corresponds to 1 +

∑
n∈Ai

Xn, and conversely we can recover
A as the set of integers that appear as exponents of its nonzero, nonconstant terms.
Using this, a British number system is an ordered sequence of sets that corresponds
to a Ψ-sequence, and taking a mixed quotient of this corresponds to creating non-
consecutive products. That is, readers can write down these definitions based on
our work in Section 2 and then verify that they are exactly the definitions in [2].
Also see Table 1 below in Section 5. Since the above theorem for additive systems
is proved in [2], this establishes our structure theorem for binary factorizations.

Now we turn to the relationship between binary factorizations and fair sacks of
dice.

4. Second connection: fair sacks of dice.

We begin this section by defining some terminology. A die is a probability space
d whose outcomes are finitely many nonnegative integers. A face of d is an outcome
that occurs with positive probability. We do not assume that the faces are equally
probable. Given a finite set of dice {di}i∈I , for which we always assume the di are
independent, notice that adding the outcomes of the dice gives a new probability
space whose outcomes are also finitely many nonnegative integers. That is, this
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sum is itself a die, which we call the sack of the dice and write as the set {di}i∈I .
(In [3] a sack was not treated as a die, but this is a minor change.) The sack of no
dice is the die whose only face is 0.

For example, suppose d1 has faces 0, 1, and 2, each with probability 1
3 , and d2

has faces 0, 1, 2, 3, and 4, each with probability 1
5 . Then the sack {d1,d2} has

faces 0, 1, 2, 3, 4, 5, and 6, with respective probabilities 1
15 ,

2
15 ,

3
15 ,

3
15 ,

3
15 ,

2
15 , and

1
15 . For example, the face 4 can be achieved in 3 ways, as 0 + 4, 1 + 3, and 2 + 2,
and each way has probability 1

15 .
We use polynomials to represent dice as follows. Suppose f (X) = c0+c1X+· · ·+

ctX
t is a nonzero polynomial such that c0, c1, . . . , ct are nonnegative real numbers.

Then to f (X) we associate the die d in which the outcome n has probability cn
f(1) .

We have that the sum of the probabilities is 1 since f (1) = c0 + c1 + · · ·+ ct, and
the faces of d are those n such that cn 6= 0. We say that f (X) represents d. (If
f (1) = 1, then f (X) is the generating function of d.) Every die can be represented
by a polynomial, and this polynomial is unique up to multiplication by a positive
constant.

In a moment we prove that a sack of dice can be represented by the product of
polynomials that represent the individual dice. For example, d1 and d2 as defined
above can be represented by f1 (X) = 1+X+X2 and f2 (X) = 1+X+X2+X3+X4,
and the sack {d1,d2} is represented by f1 (X) f2 (X) = 1 + 2X + 3X2 + 3X3 +
3X4 + 2X5 + X6. Since f1 (1) f2 (1) = 15, we see again from the term 3X4 that in
this sack of two dice, the face 4 occurs with probability 3

15 .

Proposition 6. Let I be a finite set, and suppose that for each i ∈ I we have a
die di represented by a polynomial fi (X). Then the product

∏
i∈I fi (X) represents

the sack of dice {di}i∈I .

Proof. Write fi (X) =
∑ti

n=0 ci,nX
n for i ∈ I, so that the probability of outcome n

for die di is
ci,n
fi(1) if n ∈ {0, 1, . . . , ti} and otherwise is zero. Let g (X) =

∏
i∈I fi (X),

and let N be a nonnegative integer. We must show that the probability of outcome
N in the sack of dice is equal to the coefficient of XN in g (X) divided by g (1).
Certainly if N >

∑
i∈I ti, then both these quantities are 0, so assume N ≤

∑
i∈I ti.

The probability of N in the sack of dice is
∑∏

i∈I
ci,ni

fi(1) = 1
g(1)

∑∏
i∈I ci,ni

, where
both sums are over all {ni}i∈I such that each ni is a nonnegative integer with
ni ≤ ti and N =

∑
i∈I ni. Notice, however, that the coefficient of XN in g (X) is

this second sum
∑∏

i∈I ci,ni , completing our proof. �

Let us say that a die is unbiased if its faces occur with equal probability and
that a die is fair if it is unbiased and its faces are {0, 1, . . . , s− 1} for some positive
integer s. Recalling that a sack of dice is itself a die, this also defines a fair sack
of dice. It is important to distinguish a fair sack of dice from a sack of fair dice.
For example, {d1,d2} as defined above is a sack of fair dice but not a fair sack of
dice. It turns out that a sack of two or more fair dice, each with at least two faces,
is never a fair sack. This is a simple consequence of the structure theorem of [3],
which we give below. It was known earlier, as discussed at the end of Section 2 of
[3].

If a die d is represented by f (X), then d is unbiased if and only if f (X) is a
positive constant times a polynomial whose coefficients are all 0 or 1, and d is fair
if and only if f (X) is a positive constant times Ψs (X) for some positive integer
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s. Just as Proposition 4 gave us Theorem 5 above, now Proposition 6 gives us the
following.

Theorem 7. Suppose {di}i∈I is a sack of dice, with each di represented by a
polynomial fi (X). Then the sack {di}i∈I is fair if and only if

∏
i∈I fi (X) is a

positive constant times Ψs (X) for some positive integer s.

Earlier we used a one-to-one correspondence between sets of positive integers
and certain power series. It is useful to have a similar correspondence between
dice and nonzero polynomials with nonnegative coefficients, so we will choose one
polynomial among those that represent a die. We could use the generating function,
i.e., requiring fi (1) = 1, but we choose instead to make fi (X) monic, following the
convention of [3]. With that choice, an unbiased die is represented by a polynomial
whose coefficients are all 0 and 1, and a fair die (or a fair sack of dice) is represented
by Ψs (X) for some positive integer s. With this convention, we can translate some
additional terminology of [3]. A factorization sack corresponds to a Ψ-sequence,
and an interval free partition corresponds to nonconsecutive products. (Again see
Table 1, below.) As with additive systems, the reader can write down definitions of
these terms based on these correspondences and then verify that they agree with
[3]. Our structure theorem for binary factorizations, when restricted to finite size,
is then equivalent to the following.

Theorem (Structure of fair sacks of unbiased dice). A fair sack of unbiased dice
can be written uniquely as an interval free partition factorization sack.

Let us compare this to the following, which is Theorem 5.1 of [3].

Theorem (Structure of fair sacks of dice). A fair sack of dice can be written
uniquely as an interval free partition factorization sack.

That is, this is a stronger theorem because it additionally gives the important
fact that a fair sack of dice contains only unbiased dice. This fact was proved many
years earlier [1, Corollary 5], was used in [3] to prove the structure of fair sacks of
dice, and can be translated to polynomials as follows.

Theorem 8. Suppose
{
fi (X)

}
i∈I is a finite set of polynomials with each fi (X)

monic and having nonnegative real coefficients. If
∏

i∈I fi (X) = Ψs (X) for some
s, then each fi (X) has coefficients that are only 0 and 1. (Consequently, if also
fi (X) 6= 1 for all i, then

{
fi (X)

}
i∈I is a binary factorization.)

Before we move on, let us consider possible extensions. In Theorem 8, we know
s 6= ∞ because Ψs (X) is a product of finitely many polynomials. What if some
fi (X) are power series that are not polynomials? What if there are infinitely many
fi (X) such that fi (X) 6= 1 for infinitely many i? In either case,

∏
i∈I fi (X) =

Ψs (X) would imply s =∞. Let us see that in neither case does the conclusion of
Theorem 8 have to hold.

Proposition 9. Let f (X) =
∑∞

n=0 cnX
n be a power series such that 1 = c0 ≥ c1 ≥

c2 ≥ · · · ≥ 0 and f (X) 6= Ψ∞ (X). Then there exist positive integers n1 < n2 <
n3 < · · · and positive real numbers d1, d2, d3, . . . such that f (X)

∏∞
j=1

(
1 + djX

nj
)

=

Ψ∞ (X).

If we apply this when 0 < cn′ < 1 for some n′, then neither proposed extension
of Theorem 8 works because we get Ψ∞ (X) when we multiply f (X) either by the
single power series

∏∞
j=1

(
1 + djX

nj
)
or by infinitely many binomials 1 + djX

nj .
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Proof. We claim that for all positive integers r, there exist positive integers n1 <
n2 < · · · < nr and positive real numbers d1, d2, . . . , dr−1 such that in f (X)

∏r−1
j=1

(
1 + djX

nj
)
,

the coefficients are nonnegative and nonincreasing, with exactly the first nr equal to
1 (i.e., up to but not including the coefficient of Xnr ). Concluding the proposition
from this claim then involves the same reasoning we used above to show that the
product of a Ψ-sequence with L =∞ is Ψ∞ (X).

For r = 1, our claim holds because we use f (X) 6= Ψ∞ (X) to define n1 to be
the smallest integer such that cn1

6= 1. Now we continue by induction. Assume
the claim for some r ≥ 1. Then in f (X)

∏r−1
j=1

(
1 + djX

nj
)
, the coefficients of

1, X, . . . , and Xnr−1 equal 1, and the coefficient of Xnr is nonnegative and less
than 1. Let dr be 1 minus this coefficient of Xnr . Then dr is positive and it is
a routine calculation to show that in f (X)

∏r
j=1

(
1 + djX

nj
)
, the coefficients are

nonnegative and nonincreasing, with the coefficients of 1, X, . . . , Xnr equal to 1
but with the coefficient of X2nr less than 1. We complete our induction step by
defining nr+1 to be the smallest integer such that the coefficient of Xnr+1 is not 1,
which means nr < nr+1 ≤ 2nr.

�

Open Question. Let f (X) =
∑∞

n=0 cnX
n be a power series with all cn ≥ 0 and

c0 > 0. When is it possible to find g (X) =
∑∞

n=0 dnX
n with all dn ≥ 0 such that

f (X) g (X) = Ψ∞ (X)? Equivalently, when does the power series Ψ∞(X)
f(X) have all

nonnegative coefficients?

In this question we are looking for a necessary and sufficient condition for the
existence of g (X). If c0 = 1, then Proposition 9 tells us that a sufficient condition
is c0 ≥ c1 ≥ c2 ≥ · · · ≥ 0. This condition is sufficient even without assuming c0 = 1
because we can multiply f (X) and g (X) by positive constants. This condition,
however, is not necessary.

Exercise. Let c2 ≥ 0 and f (X) = 1 + 1
2X + c2X

2. Prove that c2 ≤ 3
4 if and

only if there exists g (X) =
∑∞

n=0 dnX
n with all dn ≥ 0 such that f (X) g (X) =

Ψ∞ (X). (Hint: for one direction, multiply first by 1 + 1
2X and then use our

sufficient condition above.)

We conclude this section by returning to a topic from Section 1. The structure
theorem for binary factorizations solved a more general problem than Problem 1
because it gave a unique form for all binary factorizations, not just the finite ones.
How does Theorem 8, which is translated from fair sacks of dice, solve a differ-
ent generalization? We still conclude the same unique form, i.e., nonconsecutive
products of a Ψ-sequence, but starting with less. Rather than assuming we have
a binary factorization of finite size, we start with a set polynomials with product
Ψs (X) for some positive integer s, such that each polynomial is monic, not equal
to 1, and has nonnegative real coefficients.

5. Benefiting from the connections.

We have introduced two important one-to-one correspondences. First, in Sec-
tion 3 we paired a set A of positive integers with 1 +

∑
n∈A Xn, so that, by The-

orem 5, an additive system corresponds to a binary factorization. Second, in Sec-
tion 4 we paired a die with the unique monic polynomial that represents it. This
similarly allows us to use Theorem 7 to tell us that a fair sack of dice corresponds
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to a binary factorization of finite size, provided that we use the additional fact that
every die in a fair sack must be unbiased. In this section we translate other results
for additive systems into results about binary factorizations and fair sacks of dice.

To begin, consider that an additive system is uniquely determined or almost
uniquely determined by the union of its sets. By “almost” we mean that there can
be up to two additive systems with the same union. To be precise, we give the
following theorem, which is derived from Theorems 9 and 10 of [2].

Theorem (Uniqueness for additive systems). Let U be the union of the sets of an
additive system.

(1) If there exist positive integers M and N such that the M + 1 largest el-
ements of U are N , 2N , . . . , (M + 1)N , then exactly one other addi-
tive system has union U . Specifically, there exists a unique additive sys-
tem {Ai}i∈I of size N such that {Ai}i∈I ∪

{{
N, 2N, . . . , (M + 1)N

}}
and

{Ai}i∈I ∪
{
{N, 2N, . . . ,MN} ,

{
(M + 1)N

}}
are the two additive systems

with union U .
(2) Otherwise there is no other additive system with union U .

To translate this to binary factorizations, let us see what can correspond to the
union of sets of an additive system. Let

{
fi (X)

}
i∈I be a binary factorization. For

i ∈ I, fi (X) has a constant term 1 and has no other term in common with any
term of some other fi′ (X). Thus every coefficient of

∑
i∈I
(
fi (X)− 1

)
is 0 or 1,

and we call this the positive term sum of the binary factorization. Notice that if
fi (X) = 1 +

∑
n∈Ai

Xn, then the positive term sum of
{
fi (X)

}
i∈I corresponds to∑

n∈
⋃

i∈I Ai
Xn. We can now restate the above theorem.

Theorem (Uniqueness for binary factorizations). Let F (X) be the positive term
sum of a binary factorization.

(1) If there exist positive integers M and N such that F (X) equals XN +
X2N + · · ·+X(M+1)N plus a polynomial of degree less than N , then exactly
one other binary factorization has positive term sum F (X). Specifically,
there exists a unique binary factorization

{
fi (x)

}
i∈I of size N such that{

fi (x)
}
i∈I∪

{
ΨM+2

(
XN

)}
and

{
fi (x)

}
i∈I∪

{
ΨM+1

(
XN

)
,Ψ2

(
X(M+1)N

)}
are the two binary factorizations with positive term sum F (X).

(2) Otherwise there is no other binary factorization with positive term sum
F (X).

In order to translate this to fair sacks of dice, we define the die faces of a fair
sack of dice to be the single set containing all faces that appear on any die in the
sack. If a sack of fair dice corresponds to the additive system {Ai}i∈I , then the die

faces are {0} ∪
(⋃

i∈I Ai

)
. Also let us adopt from [3] a term that corresponds to

the size of a binary factorization or additive system. We define the total of a fair
sack of dice to be s if the faces of the fair sack are {0, 1, . . . , s− 1}.

Theorem (Uniqueness for fair sacks of dice). Let U be the die faces of a fair sack
of dice.

(1) If there exist positive integers M and N such that the M + 1 largest el-
ements of U are N , 2N , . . . , (M + 1)N , then there exists exactly one
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other sack of fair dice with die faces U . Specifically, the two sacks start
with a unique fair sack of dice with total N and add either an unbiased
die with faces

{
0, N, 2N, . . . , (M + 1)N

}
or two unbiased dice with faces

{0, N, 2N, . . . ,MN} and
{

0, (M + 1)N
}
.

(2) Otherwise there is no other fair sack of dice with die faces U .

In the three uniqueness theorems above, suppose we have case (1). The two
additive systems or binary factorizations or fair sacks of dice can be distinguished
by their size (or total, for a fair sack of dice), because in the notation of (1), the two
sizes are (M + 2)N and 2 (M + 1)N . We can instead distinguish them by looking
at the number of objects (i.e., the number of sets, power series, or dice). In the
case of binary factorizations, we can rephrase this to say that when I is finite, a
binary factorization

{
fi (X)

}
i∈I is uniquely determined by

∑
i∈I fi (X). Indeed, in

this sum the constant term is the number of elements in I and the remaining terms
form the positive term sum.

When that there exists at least one additive system with union U , [2] gives
an explicit construction of the one or two additive systems. In the notation and
terminology of [2], the additive systems are CU and, if CU is reducible, its reduction.
This construction can be adapted in order to find binary factorizations given only
the positive term sum, or to find fair sacks of dice given only the set of die faces.

binary factorization
{
fi (X)

}
additive system {Ai} fair sack of dice {di}

power series fi (X) set Ai die di

size size total
Ψ-sequence British number system factorization sack
product quotient partition

nonconsecutive products mixed quotient interval free partition
positive term sum union die faces

Table 1. Equivalences

Now let us recall that an arbitrary binary factorization can be uniquely expressed
as nonconsecutive products of a Ψ-sequence. The relationship between the binary
factorization and the Ψ-sequence is closely related to imposing a “ceiling,” in the
sense that we “cap off” the binary factorization to values below various positive
integers N . Similar statements hold for additive systems and fair sacks of dice, and
we make all of these precise in the following theorems. The first is a reworded and
condensed version of Proposition 7 and Theorem 8 of [2], and then we translate to
binary factorizations and fair sacks of dice.

Theorem (Capping the sets of an additive system). Let {Ai}i∈I be an additive
system. For a positive integer N and i ∈ I, let A<N

i be the set of elements of Ai

that are less than N , and let IN =
{
i ∈ I : A<N

i 6= ∅
}
.

(1) We can order the Ai so that they form a British number system if and only
if
{
A<N

i

}
i∈IN

is an additive system for every positive integer N .

(2) Fixing a positive integer N such that N ∈ Ai for some i ∈ I, the following
are equivalent.
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(a) N is an element of one of the sets of the unique British number system
for which {Ai}i∈I is a mixed quotient.

(b)
{
A<N

i

}
i∈IN

is an additive system of size N .

(c)
{
A<N

i

}
i∈IN

is an additive system.

(d)
∑

i∈IN maxA<N
i is less than N .

In the notation of [2],
{
A<N

i

}
i∈IN

is written A<N , where A = {Ai}i∈I .

Theorem (Capping the power series of a binary factorization). Let
{
fi (X)

}
i∈I be

a binary factorization. For a positive integer N and i ∈ I, let f<N
i (X) be the sum of

the terms of fi (X) whose degree is less than N , and let IN =
{
i ∈ I : f<N

i (X) 6= 1
}
.

(1) We can order the fi (X) so that they form a Ψ-sequence if and only if{
f<N
i (X)

}
i∈IN

is a binary factorization for every positive integer N .

(2) Fixing a positive integer N such that XN is a term of fi (X) for some i ∈ I,
the following are equivalent.
(a) XN is a term of some Ψaj

(
Xbj

)
, where

(
Ψaj

(
Xbj

))
0≤j<L

is the

unique Ψ-sequence that has nonconsecutive products
{
fi (X)

}
i∈I .

(b)
{
f<N
i (X)

}
i∈IN

is a binary factorization of size N .

(c)
{
f<N
i (X)

}
i∈IN

is a binary factorization.

(d)
∏

i∈IN f<N
i (X) is a polynomial of degree less than N .

Theorem (Capping the dice of a fair sack). Suppose we have a fair sack of dice
{di}i∈I . For a positive integer N and i ∈ I, let d<N

i be the unbiased die whose faces

are those faces of di that are less than N , and let IN =
{
i ∈ I : d<N

i has more than one face
}
.

(1) We can order the di so that they form a factorization sack if and only if{
d<N
i

}
i∈IN

is a fair sack of dice for every positive integer N .

(2) Fixing a positive integer N such that N is a face on di for some i ∈ I, the
following are equivalent.
(a) N is a face that appears on a die of the unique factorization sack which

forms {di}i∈I by using an interval free partition.

(b)
{
d<N
i

}
i∈I

is a fair sack of dice of total N .

(c)
{
d<N
i

}
i∈I

is a fair sack of dice.

(d)
∑

i∈IN maxd<N
i is less than N , where maxd<N

i is the largest face on
the die d<N

i .

6. Conclusion

By way of Theorem 5 and Theorem 7, we have shown that additive systems,
sacks of fair dice, and binary factorizations are the same, roughly speaking. Any
additional results on these topics can be translated to the other topics, and we hope
that others will do this.
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We caution readers, however, to be aware of imperfections in the correspondences
among a set of positive integers, a power series, and a die. For example, let f1 (X) =∑∞

n=0
1

2nX
n. This does not correspond to a set of positive integers because it has

coefficients that are not 0 or 1. It also does not correspond to a die, because there
are infinitely many nonzero terms.

Since f1 (1) =
∑∞

n=0
1

2n = 2, perhaps f1 (X) should represent a die, except with
infinitely many faces, with face n having a probability of 1

2n+1 . For our purposes,
however, this seems to have limited applicability. Indeed, defining f2 (X) = 1

2 +
1
2Ψ∞ (X), the reader can verify that f1 (X) f2 (X) = Ψ∞ (X). One might then
anticipate that the dice represented by f1 (X) and f2 (X) should make a fair sack.
However, f2 (X) does not represent a die in the way f1 (X) does since f2 (1) =∞.

Thinking instead about additive systems, could f1 (X) and f2 (X) correspond
to “weighted sets” of positive integers, where each coefficient gives a weight of the
corresponding positive integer? In this way f1 (X) f2 (X) = Ψ∞ (X) might tell us
that the weighted sets form a sort of weighted additive system. We will leave it to
others to determine if this is a productive path to pursue.
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